Models CD 6000 and CU 6000 Sliding Sleeves
Product Family No. H81000

APPLICATION
The Models CD 6000™ and CU 6000™ series sliding sleeves are high-performance, equalizing sliding sleeves which allow communication between the tubing and annulus for circulation or selective-zone production. When desired, the sleeve can be shifted open or closed using standard wireline methods and a B-type shifting tool. The tool is designed such that any lock profile and compatible sealbores can be specified to accept a wide range of wireline locks and accessories. The sleeve is available in Model CD 6000 downshift-to-open or Model CU 6000 upshift-to-open versions.

The nominal working pressure for the sleeve is 6,000 psi (413.69 bar) at 275°F (135°C) service temperature. The sleeve is manufactured of low alloy steel.

In designing the Models CD 6000 and CU 6000 series sliding sleeves, several unique features have been combined to upgrade seal performance and increase service life.

Features/Benefits
- A specially designed diffuser ring made of high-strength thermoplastic is critically spaced between the flow ports and the upper packing unit. This prevents damage to the upper packing unit during shifting by controlling the rush of fluid or gas, and lessens the likelihood of tool string damage by providing for slow equalization of high differentials.
- Mill slots replace drill holes as flow ports on both the housing and the insert to allow more flow area, reduce erosion and allow higher torque and tensile strength through the sleeve.
- Locating the threaded connection inside the primary seal stack eliminates the need for O-ring thread seals and reduces the number of potential leak paths.
- A locking, angled torque shoulder replaces traditional square shoulder to allow higher torques and reduce thread back off.
- Modular design permits conversion from a Model CD 6000 to Model CU 6000 or vice versa by only changing the upper and lower subs.
- Proprietary non-elastomeric and elastomeric compounds enhance a sealing system designed for diverse environments.